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Effects of nucleoid-associated proteins on bacterial chromosome
structure and gene expression
Douglas F Browning1, David C Grainger2 and Stephen JW Busby3
Bacterial nucleoid-associated proteins play a key role in the

organisation, replication, segregation, repair and expression of

bacterial chromosomes. Here, we review some recent progress

in our understanding of the effects of these proteins on DNA

and their biological role, focussing mainly on Escherichia coli

and its chromosome. Certain nucleoid-associated proteins

also regulate transcription initiation at specific promoters, and

work in concert with dedicated transcription factors to regulate

gene expression in response to growth phase and

environmental change. Some specific examples, involving the

E. coli IHF and Fis proteins, that illustrate new principles, are

described in detail.
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Introduction
The nucleoid is a region of the bacterial cell into which its

chromosome is constrained. To fit into this space, the

DNA has to be highly compacted and this is due to the

action of supercoiling, RNA and nucleoid-associated

proteins (NAPs). Bacterial chromosome folding and the

factors involved in their folding began to be investigated

in the 1970s. However, the first thorough and systematic

investigation of NAPs came from Akira Ishihama and

colleagues in 1999 [1,2], who catalogued the different

NAPs of Escherichia coli, measured their binding affinities,

investigated their preferred targets, quantified their

levels, and reported dramatic changes in the levels of

certain NAPs in response to changes in growth. The

arrival of chromatin immunoprecipitation technology

together with whole genome sequences has a led to a

picture of the distribution of individual NAPs across
www.sciencedirect.com
whole chromosomes [3], whilst the total protein occu-

pancy landscape has been established using complemen-

tary experimental approaches [4�,5]. Remarkably, we are

still largely ignorant of precisely how bacterial chromo-

somes are packaged and organised, but the literature,

perhaps mistakenly, places a big emphasis on the import-

ance of NAPs [6]. Here, we present a selection of recent

reports, describing effects of NAPs on bacterial chromo-

some structure and gene expression, and we refer the

reader to the excellent review by Dillon and Dorman [7�]
for a comprehensive up-to-date picture.

Bacterial folded chromosomes
Of all the bacterial chromosomes, it is the E. coli chromo-

some that has been most studied. Its packaging and

organisation can be probed using fluorescent proteins

targetted to specific loci and Sherratt and colleagues’

recent review [8] explains how its replication and segre-

gation are organised. Wiggins et al. [9] have pushed the

technology to the limit and measured the distribution and

fluctuations of many different locations and their juxta-

position, and they conclude that loci show remarkable

precision in their positioning. Thus, although many text-

books sketch bacterial chromosomes as a more or less

disordered jumble of DNA, this is far from the reality and

they are likely to be organised with the same precision as

other macromolecular assemblies, although with a built-

in facility for change due to the mechanics of DNA

replication, repair, segregation and expression. With

respect to building this structure, Sexton et al. [10] argue

for the importance of meeting points between different

locations in chromosomes, and Junier et al. [11] describe

the physical consequences of these interactions. The

resulting periodicity, and the creation of different neigh-

bourhoods within the same cell, may have consequences

for gene expression and for the organisation of regulatory

networks, and these are explored by Janga et al. [12] and

Mathelier and Carbone [13].

The traditional view of the E. coli folded chromosome is

that it consists of a series of constrained loops separated

by dynamic boundaries. Boccard and his colleagues have

suggested a higher order of organisation in which the

chromosome is partitioned into six discrete ‘macrodo-

mains’, and fluorescence microscopy shows that the local

DNA dynamics differs in each of the macrodomains that

may correspond to distinct physical structures [14]. In a

recent study [15�], Boccard’s team identified a new

nucleoid-associated protein, MatP, whose binding is

specific for the ter macrodomain that covers the replica-
Current Opinion in Microbiology 2010, 13:773–780
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774 Growth and development: prokaryotes
tion termination region. This is an important result as it

shows that the local structure of each segment of a

bacterial chromosome might not be identical, though,

for the moment, it is not clear how MatP binding confers

distinctive properties on the ter macrodomain.

Flexibility and variation in NAPs
Studies of different bacterial systems in different con-

ditions have revealed complexities that were not apparent

in Ishihama and colleagues’ original ‘audit’ of E. coli
NAPs [1,2]. For example, the observation that the high

levels of Fis in rapidly growing cells are reduced to near

zero as cell growth slows does not apply in anaerobic

cultures of Salmonella enterica serovar Typhimurium [16].

Moreover, there is great variation in NAPs in different

bacteria and Fis is restricted to Gamma proteobacteria

[17], although AbrB appears to play the same role in

Bacillus subtilis [18]. Takeyasu and colleagues have

exploited atomic force microscopy [19] and optical twee-

zers [20] to observe big changes in the fibre structure of

the E. coli chromosomes in different growth conditions

and have attributed these to changes in the levels of

different NAPs [17] and also transcription patterns

[21,22]. However the behaviour of E. coli is more elab-

orate than many bacteria and, for example, such changes

are not seen in the chromosomes of Staphylococcus aureus
[23]. Finally the lists of different NAPs found in the

literature for different bacteria may not yet be a closed

book. Thus the B. subtilis Noc protein [24] and the E. coli
Dan protein [25] are recent additions, and the discovery of

MatP [15�] hints that there may be many more locally

acting NAPs to be found.

NAPs and DNA structure
In vitro studies with purified individual NAPs using both

ensemble and single molecule measurements show that

bending, bridging, wrapping and clustering can result,

following binding to DNA [6]. Some of these modes are

illustrated in Figure 1. For example, DNA bridging by H-

NS has been shown most comprehensively by Remus

Dame and his colleagues using a variety of biophysical

methods [26]. A recent report suggests that different

modes of H-NS action could be controlled by divalent

metal ions [27�]. Similarly, HU, the most universally

conserved and abundant NAP, can induce DNA bends,

condense DNA in a fibre, and also interact with single

stranded DNA [28,29]. Combinations of NAPs have been

studied systematically by Muskhelishvili and colleagues

and shown to generate novel types of DNA organisation

[30]. Significantly, Dps and CbpA, both of which are

strongly induced in stationary phase E. coli, cause com-

paction by clustering of distal DNA loci (Figure 1b) [31].

NAPs and global transcription
Since most of the NAPs are high abundance and quite

promiscuous with respect to DNA binding it is unsurpris-

ing that they affect transcription on a global scale. For
Current Opinion in Microbiology 2010, 13:773–780
example, two recent reports [32,33] underscore the pro-

found influence of HU in coordinating the E. coli tran-

scriptome. The importance of NAPs in global

transcription is reinforced by chromatin immunoprecipi-

tation experiments which showed that, for H-NS, IHF

and Fis in E. coli, the majority of binding targets were

located in intergenic regulatory regions [34]. Effects on

global transcription not only occur due to changes in the

relative levels of NAPs in different growth phases, but

also arise due to NAP binding being affected by the

passage of replication forks during the cell cycle. For

example, a recent report [35] highlighted a possible role

for SeqA, which binds to targets containing hemi-meth-

ylated GATC motifs.

Much recent literature attention has focused on H-NS,

which is often referred to as the ‘genome guardian’, the

‘universal repressor’ or a ‘sentinel’ [7�,36]. H-NS presents

a tantalising problem, because, despite having been first

reported in 1971 [37], we still lack understanding, at the

molecular level, of specific repression by H-NS and how it

is modulated. What is clear is that H-NS recognizes AT-

rich segments of the chromosome, and then binding is in

two steps, an initial binding of the H-NS dimer, followed

by further co-operative binding, and this can result in

molecular bridging between distal chromosome locations

and concomitant transcription regulation [36]. A major

breakthrough was the identification of high affinity DNA

sites for H-NS that are, perhaps, responsible for step one

of H-NS binding [38�].

The existence of the H-NS paralogue, StpA, in both E.
coli and S. enterica serovar Typhimurium has long posed a

puzzle, since stpA knockouts have minimal effects in E.
coli. Using biochemical approaches, John Ladbury’s

group showed that H-NS and StpA could form both

homodimers and heterodimers [39] and this may well

explain genome-wide chromatin immunoprecipitation

data from Oshima and colleagues [40], who found that

the vast majority of DNA targets in E. coli occupied by

StpA were also occupied by H-NS. Deletion of stpA had a

minimal effect on the distribution of H-NS, whilst

deletion of hns greatly reduced the number of StpA-

bound targets. Thus, in E. coli, StpA binds mainly as a

heterodimer with H-NS, acting almost as a ‘reserve’. By

contrast, in S. enterica serovar Typhimurium, StpA plays

a significant role, an stpA deletion affects expression of

5% of the genome, and there appears to be an StpA

regulon [41].

The observation that many of the A:T-rich targets for H-

NS are located in genome segments that have arrived by

horizontal evolution prompted the idea that H-NS is a

‘sentinel’ whose task is to suppress expression from

externally acquired pieces of DNA [7�]. Support for this

comes from the observation that some transmissible plas-

mids carry a gene encoding an H-NS homologue. Doyle
www.sciencedirect.com
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Figure 1

FisH-NS IHF

HU

Dps CbpA

(a)

(b)
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DNA folding properties of bacterial nucleoid proteins. (a) Log phase-specific and constitutively expressed nucleoid proteins. The diagrams depict the

DNA folding properties of nucleoid proteins (shown as grey spheres) found either in only growing cells (Fis) or in all phases of growth (IHF, HU and H-

NS). (b) Stationary phase-specific nucleoid proteins. The figure depicts the DNA folding properties of the nucleoid proteins Dps and CbpA (shown as

grey spheres). Both proteins self-aggregate when associated with DNA.
et al. [42�] identified Sfh as such a homologue and showed

that, without Sfh, incoming plasmids stress the host cell as

they titrate out host H-NS. Hence Sfh can be viewed as a

molecular stealth device that permits the plasmid to enter

the host without causing disruption. A recent genome-

wide analysis of H-NS and Sfh binding in S. enterica
serovar Typhimurium [43] supports this view by showing

that Sfh and H-NS recognise common target sites, and

argues that the invading plasmid deploys Sfh to ‘top-up’

the level of H-NS thereby minimizing disturbance to its

new host. This scenario, with H-NS as a sentinel, sup-

poses that, if a segment of horizontally acquired DNA

segment encoded something that was useful for its new

host, mechanisms would evolve to ensure activation.

Recent reviews from Dorman and colleagues [44,45]

discuss this issue and outline the different mechanisms

by which repression by H-NS and its homologues at

specific targets can be lifted.
www.sciencedirect.com
Another current focus of H-NS research concerns Myco-
bacteria where initial scans of genome sequences

suggested that H-NS was absent and that a protein that

resembled the GroEL chaperone functioned as a NAP

[46]. However it has now been shown that the M. tuber-
culosis Rv3597 and Rv3852 genes encode proteins (Lsr2

and H-NS respectively) whose in vitro properties

resemble H-NS from enterics. Concerning Lsr2, although

it shares but 4% sequence identity with E. coli H-NS, it is

a DNA-bridging protein that binds to AT-rich regions,

and can complement some effects of hns mutations in E.
coli [47,48]. Similarly, the H-NS-like product of the M.
tuberculosis Rv3852 gene can complement hns mutations

in E. coli [49]. Interestingly the M. tuberculosis Rv3852

gene product has been shown to interact with Holliday

junctions [50], and this underscores the point that,

although the majority of literature concerning H-NS

and its paralogues focuses on their interaction with double
Current Opinion in Microbiology 2010, 13:773–780



776 Growth and development: prokaryotes
stranded DNA, there is considerable evidence for inter-

actions with single stranded nucleic acids, including

messenger RNA. For example, a recent report [51�]
describes interactions of H-NS with the leader sequence

of the E. coli malT gene, and argues that H-NS activates

the initiation of translation of MalT, and may interact

likewise at other messengers.

IHF: a NAP that likes to play with others
Bacterial Integration Host Factor (IHF) is a NAP that

plays many roles, binds at many DNA targets, and is

known to act like a transcription factor at many gene

regulatory regions in E. coli [34]. Its major function is to

bend target DNA sharply and hence it often functions in

conjunction with other NAPs and transcription factors,

such as at the fim switch that controls phase variable of

type 1 fimbriae in E. coli [52]. Recent experiments with

the E. coli nir and nrf promoters, which both are induced

by anaerobiosis together with nitrite or nitrate ions, have

revealed new subtleties in IHF action. Both promoters

control the expression of a nitrite reductase and expres-
Figure 2

(b) The E. coli nrf promoter.

-127 -74.5

IHF  I

NarL/P

Fis 

-142 -115

IHF

-88 -69.

IHF  

NarL

(a) The E. coli nir promoter.

NsrR

-63

Transcription regulation at the E. coli nir and nrf operon promoters. (a) The n

Fis and IHF inhibits FNR-activated transcription (�ve), whilst IHF binding to

NarL (or its homologue, NarP) displaces IHF, counteracting the repression m

transcription. (b) The nrf promoter. Transcription initiation is dependent on F

activated transcription (�ve), whilst occupancy of a second upstream IHF s

IHF, counteracting IHF-mediated repression and increasing FNR-dependent

nitrogen species. In both panels, the transcription start point (+1) is indicate
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sion is completely dependent on FNR, the master reg-

ulator of transcription in anaerobic conditions. At both

promoters, FNR-dependent transcription activation is

suppressed by upstream-bound IHF. At the nir promoter,

this suppression is effected by the combined action of

IHF (which binds at position �88) and Fis (which binds

at position �142). The dependence of the promoter on

nitrite or nitrate ions comes from the fact that NarL and

NarP, transcription activators that are triggered by nitrite

and nitrate, bind to a site that overlaps the DNA site for

IHF (Figure 2a). Binding displaces IHF and this results in

relief of suppression of FNR-dependent nir promoter

activity. The unexpected subtlety is the existence of a

second weaker DNA site for IHF located at position

�115, and that IHF binding at this site is activatory for

FNR-dependent nir promoter activity. Hence basal nir
promoter activity in anaerobic conditions in the absence

of nitrite or nitrate depends on the relative occupation of

the two DNA sites for IHF. The base sequence of these

two sites varies from one E. coli strain to another and this

variation sets the basal activity in any strain [53].
+1

FNR

-41.5

-ve

-54

HF  Fis

-15

+ve

+1

FNR

-41.5

-ve

5

+ve

/P
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ir promoter. Transcription initiation is dependent on FNR. The binding of

a second lower affinity site stimulates transcription (+ve). The binding of

ediated by IHF and Fis, and enabling maximal FNR-dependent

NR. The binding of IHF, Fis and NsrR to the promoter inhibits FNR-

ite stimulates transcription (+ve). The binding of NarL or NarP displaces

transcription. Repression by NsrR is relieved by the presence of reactive

d by a bent arrow.
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Figure 3

Displacement of an Essential Activator.

Jamming of RNA Polymerase.
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-ve

Class I Activation.  
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Regulation of transcription initiation by Fis. The figure shows sketches to illustrate the different ways that Fis can interact at bacterial promoters. In all

panels, the transcription startpoint (+1) is indicated by a bent arrow. (a) Simple class I activation. Fis directly contacts the C-terminal domain of one of the a

subunits of holo RNA polymerase (Es70), thereby recruiting RNA polymerase to the promoter. (b) Altering DNA conformation. Binding of Fis to the upstream

of the promoter stabilizes the ‘‘breathing’’ of the DNA helix, transmitting this energy downstream and facilitating the ease with RNA polymerase interacts

with the promoter. (c) Direct repression. The binding of Fis to the promoter region directly blocks the association of holo RNA polymerase (Es70). (d)

Displacement of an essential activator. Fis represses transcription initiation by displacing an essential activator (A). (e) Preventing the function of an

activator. Fis represses transcription initiation by interfering with the ability of an activator protein (A) to activate transcription. (f) Jamming of RNA

polymerase at promoters. Binding of Fis, in unison with holo RNA polymerase containing s70 (Es70), shuts down transcription by creating a repression

complex. This blocks access to the promoter by RNA polymerase containing the alternative ‘‘stationary phase’’ s38 factor (Es38).
A similar situation is found at the E. coli nrf promoter,

where IHF bound at position �54 represses FNR-de-

pendent activation, whilst IHF bound further upstream at

�127 promotes activation. Surprisingly, the repression of
www.sciencedirect.com
FNR-dependent activation by IHF at the nrf promoter is

less efficient than at the nir promoter, and it has recently

been shown that a second repressor, NsrR is involved

[54]. Hence, FNR-dependent activation of the nrf pro-
Current Opinion in Microbiology 2010, 13:773–780
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moter is down-regulated independently by two different

factors, IHF that binds at position �54, and NsrR that

binds at position �63. Repression by IHF is lifted by

NarL or NarP binding in response to nitrate or nitrite,

whilst repression by NsrR is lifted when its DNA binding

activity is prevented when it interacts with reactive

nitrogen species generated as by-products of nitrate or

nitrite metabolism (Figure 2b). A distinctive feature of

the E. coli nrf promoter is that binding of Fis to a target at

position �15 overrides all the other inputs from FNR,

IHF, NsrR, NarL and NarP, and thus, unusually, this

promoter is subject to three different methods of repres-

sion (Figure 2b).

Fis: the busy-body of the cell
The factor for inversion stimulation (Fis) is another

DNA-bending NAP that plays many roles and binds at

hundreds of DNA targets in E. coli [34,55]. It is especially

important because it reaches very high levels in rapidly

growing cells but it is almost absent in certain conditions

of slow growth. The first crystal structure of Fis bound to a

DNA target has recently been reported [56�]. Detailed

studies of Fis action at individual regulatory regions have

revealed at least six different mechanisms by which it

affects gene expression (summarised in Figure 3). At

some promoters, Fis activates transcription initiation

either by directly interacting with RNA polymerase

thereby recruiting it to the promoter, or by inducing an

activatory conformational change in the promoter [57].

However a major task for Fis appears to be to shut off the

expression of inessential gene products during rapid

growth. This can be done by direct binding to essential

promoter elements as at the E. coli nrf promoter

(Figure 2b), or by displacing an essential activator [58]

or preventing the function of an activator [53]. Another

mechanism of repression employed by Fis is RNA poly-

merase jamming. Hence at the E. coli dps promoter, that

controls expression of the major stationary phase NAP,

Dps, Fis combines with RNA polymerase containing the

house keeping sigma 70 factor to form a repressive ternary

complex [59].

Conclusions and perspectives
Although our understanding of NAPs and their effects has

greatly advanced over the past few years, there are still

many issues to be tackled. Notably, how is bacterial

chromosomal DNA organised in cells and what are the

consequences on replication, transcription and repair?

What do the different macrodomains correspond to and

how are they controlled? How far is the E. coli model

applicable to other bacteria where there are a smaller

number of NAP species and do other factors such as cis-

acting RNA play a role? Many of these issues are dealt

with in a stimulating way in a recently published edited

book on bacterial chromatin [60]. Meanwhile many fresh

approaches are being taken to tackle the problems, in-

cluding sophisticated imaging, tomography and new ana-
Current Opinion in Microbiology 2010, 13:773–780
lytical approaches to home in on selected segments of

bacterial chromosomes [61].
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